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ABSTRACT
The description of stellar turbulent convection requires a minimum of Ðve coupled, time-dependent,

nonlocal, di†erential equations for the Ðve variables : turbulent kinetic energy, turbulent potential energy,
turbulent pressure, convective Ñux, and energy dissipation. Any fewer number of equations makes the
model local. In this paper, we present the following results :

1. We derive the Ðve coupled equations using a new turbulence model. The physical foundations and
the turbulence statistics on which the model was tested are discussed. The model is able to reproduce the
high Rayleigh number laboratory and direct numerical simulation data corresponding to medium-to-
high values of the Peclet number (a measure of the efficiency of convection).

2. One of the major difficulties for any stellar convective model is the description of the low-efficiency,
low Pe number region in which the physical timescale is no longer the turbulent timescale but the radi-
ative one. No previous turbulence model has been able to incorporate these multiple timescales within
the same framework properly. The present model does.

3. Overshooting is an unsolved problem in stellar structure. Its solution requires not only the above
ingredients, but an additional one, a nonlocal model. This is because in the stably stratiÐed region where

the only source of energy is di†usion, a nonlocal process. We discuss why the expressions+ [ +ad\ 0,
used thus far to describe di†usion terms are inadequate. We then present a model that was successfully
tested against LES data on the convective planetary boundary layer.

4. We analyze the nonlocal models of Gough and Xiong and discuss the approximations that are
required to derive them from the full set of equations.

5. We discuss a model that relates the up/down drafts Ðlling factors found by DNS/LES to the skew-
ness of the velocity Ðeld which can be computed from the turbulence model. The results from DNS/LES
and this model can thus be cross-checked.

6. We show that the stationary, local limit of the model reproduces recent local models (independently
derived) which have been successfully tested against a variety of astrophysical data.

7. We discuss the fact that if the dissipation v is described by a local model with a mixing length l (as
done by all authors thus far), the remaining nonlocal equations exhibit divergences which preclude a
physical solution to be found. OV results based on this method may be a coincidence since they are
arrived at by Ðne tuning a coefficient.

8. The role of compressibility is discussed.
Subject headings : convection È di†usion È stars : interiors È turbulence

1. PROBLEMS IN MODELING STELLAR

TURBULENT CONVECTION

Modeling heat transport by turbulence has been tradi-
tionally predicated on the assumption that it is possible to
compute the heat Ñux with an expression reminiscent of the
radiative Ñux. If w and h are the turbulent velocity and
temperature Ðelds, one writes

wh \ [D
t
LT
Lz

, (1a)

where is a turbulent heat di†usivity much larger than theD
tkinematic one. For obvious reasons, is calledequation (1a)

a down gradient or Fickian approximation. Even at this
formal level, without any speciÐc form of there are theo-D

t
,

retical and observational data that indicate that equation
is seriously Ñawed. For example, even when LT /Lz[ 0,(1a)

as it occurs in a stably stratiÐed case, positive have beenwh
measured & Swinbank thus exhibiting the(Priestly 1947),
phenomenon of countergradient rather than downgradient
as in This can be seen in the followingequation (1a).
manner. Consider the Ðrst terms in the equations governing

the Ñuctuating velocity and temperature Ðelds (we do not
employ the superadiabatic gradient for ease of notation ; s is
the radiative conductivity),

Lw
Lt

\ gah [ Lp
Lz

] É É É , (1b)

Lh
Lt

\ [w
LT
Lz

] s
L2h
Lz2 ] É É É , (1c)

where we have considered only the z-direction and where
the dots represent the nonlinear terms to be discussed later.
To construct the equation for one multiplieswh, equation

by h, by w, and then averages and sums(1b) equation (1c)
the two expressions. We have

L
Lt

wh \ [w2 LT
Lz

] gah2[ h
Lp
Lz

] É É É , (1d)

which exhibits the presence of the positive potential energy
term brings about two unknown vari-h2. Equation (1d)
ables, the temperature-pressure correlation, the last term in

and the nonlinear term represented by theequation (1d),
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dots and which represents the di†usion of namely,wh,

É É É \ [ L
Lz

wwh . (1e)

By the same token, the equations for and that onew2 h2
constructs from equations and bring about pres-(1b) (1c)
sure terms as well as di†usion terms. Since the Ñuctuating
pressure p does not satisfy the hydrostatic equilibrium
equation, the correlation terms

h
Lp
Lz

, w
Lp
Lz

, (1f )

are among the most difficult variables for any turbulence
model to describe, that is, to express in terms of the second-
order moments. This is because, contrary to velocity third-
order moments which exchange energy among eddies of
di†erent sizes, pressure forces tend to isotropize the com-
ponents u2, v2, and w2 of an eddy of a given size (Batchelor

As a dynamical process, occurs on the1971). w Lp/Lz
dynamical timescale while occurs on a timescaleq

pv
, h Lp/Lz

How are these timescales related to the dynamical timeq
ph.q\ K/v (K is the turbulent kinetic energy and v is its rate of

dissipation)? In most cases of geophysical turbulence, there
are no internal processes that may become so dominant as
to establish timescales shorter than q, and it is thus gener-
ally assumed that

(q
pv

, q
ph, qh) D q . (1g)

We have added which is the dissipation timescale of theqhpotential energy much as q is the dissipation time-(D12h2),
scale of the kinetic energy. In stellar convection, one cannot
use for the entire convective zone (CZ) sinceequation (1g)
radiative processes become dominant near the borders with
the radiative, stably stratiÐed regions, where convection
becomes inefficient and where a convection model is needed
the most. In those regions, the radiative timescale domi-
nates, and one may guess that instead of oneequation (1g)
should have

(q
pv

, q
ph, qh) D Pe q \ q , (1h)

where Pe is the Peclet number, which is small when radi-
ative e†ects are important. In the main part of the CZ,
convection is very efficient, radiative losses are relatively
unimportant, Pe [ 1 and is correct, but toequation (1g)
treat the overshooting region one needs equation (1h).
Actually, what one needs is a complete formula of the type

(q
pv

, q
ph, qh) \ F(Pe)q , (1i)

where one expects that for Pe [ 1, F(Pe)D Pe0 and that for
Pe\ 1, F(Pe)D Pe. We are not aware that any turbulence
model has provided the function F(Pe), and thus no existing
model can be applied with conÐdence to the whole CZ,
including the overshooting region. Using the above pro-
cedure, one of us derived the dynamic equa-(Canuto 1992)
tions for the Ðve turbulence variables,

K , 12w2 , 12h2 , wh , v , (1j)

representing turbulent kinetic energy, turbulent kinetic
energy in the z-direction, potential energy, convective Ñux,
and rate of dissipation of turbulent kinetic energy. The
model assumed which made it applicable onlyequation (1g)
to the case of efficient convection, Pe[ 1. The present
model is able to provide the function F(Pe).

Let us now return to Following the physi-equation (1f ).
cal picture discussed after one models theequation (1f ),
terms in as followsequation (1f ) (Canuto 1992, 1993).

h
Lp
Lz

\ q
ph~1wh ] c1 gah2] É É É , (2a)

w
Lp
Lz

\ q
pv
~1
A
w2[ 2

3
K
B

] c2 hw] É É É , (2b)

where the dots represent terms that may include mean
shear, should the problem call for it. The rationale behind

is that the restoring action of pressure forcesequation (2b)
trying to establish energy equipartition is directly pro-
portional to the existing degree of anisotropy, the Ðrst term
in The quantities are constants. Substi-equation (2b). c1,2tution of into givesequation (2a) equation (1d)

L
Lt

wh \ [w2 LT
Lz

[ q
ph~1wh ] (1 [ c1)gah2] É É É , (2c)

which though not yet complete, is sufficient for the moment.
For example, in the stationary case, one has

wh \ [D
t
LT
Lz

] (1[ c1)gaq
ph h2] É É É , (2d)

D
t
4 q

phw2 . (2e)

How does compare with First,equation (2d) equation (1a) ?
exhibits the potential energy contributionequation (2d)

which acts as a countergradient, and so it can explain the
positive Ñuxes even when LT /Lz[ 0, whereas equation (1a)
cannot. Second, the turbulence di†usivity requires theD

tknowledge of both for which one must write a dynamicw2,
equation which entails the pressure correlation equation

as well as of which requires the knowledge of the(2b), q
phfunction F(Pe), Third, to evaluate one mustequation (1i). h2

write the dynamic equation for which in turn brings inh2
the rate of dissipation which entails the timescale Invh qh.fact, from one derives.equation (1c)

L
Lt

1
2

h2 \ [wh
LT
Lz

] sh
L2h
Lz2 . (2f )

Since the last term is rewritten as

sh
L2h
Lz2 \ 1

2
s

L2
Lz2 h2[ vh , (2g)

vh4 s
ALh
Lz
B2

, (2h)

we are facing a new variable, the rate of dissipation ofvh,potential energy which must be modeled. We recall that the
deÐnition of v is quite analogous (see In light ofeq. [5a]).
this, it does little good to write, as in the MLT, that

D
t
\ q

phw2\ qF(Pe)w2D wrms l (2i)

since one simply hides all the difficulties in an ill-deÐned
““mixing length ÏÏ l. Rather one must consider the dynamic
equations for which one obtains from equationsw2, (1b)
and (2b),

L
Lt

1
2

w2\ (1 [ c2)gahw[ q
pv
~1
A
w2[ 2

3
K
B

] É É É , (3a)
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This brings into the problem the timescale Equationsq
pv

.
and allow us to discuss the next important feature(2c) (3a)

of convection, its nonlocal character, which is a phenome-
non of primary importance in the treatment of the OV.
When we insert back the nonlinear terms such as equation

which represent a transport in physical space, we have,(1e)
from equations and(2c) (3a),

L
Lt

1
2

w2] L
Lz

Fie\ (1 [ c2)gahw[ q
pv
~1
A
w2[ 2

3
K
B

, (3b)

L
Lt

wh ] L
Lz

F
wh\ [w2 LT

Lz
[ q

ph~1wh ] (1 [ c1)gah2 ,

(3c)

where and represent the Ñuxes of kinetic energy andFie F
whof temperature Ñux ; that is,

Fie 4 12w3 , F
wh 4 w2h . (3d)

When the eddies become deprived of the buoyant acceler-
ation, they still overshoot into the stably stratiÐed, radiative
regions, where is negative. Since the right-hand side ofwh

is now negative, there is no local source ofequation (3b)
energy. A stationary solution can only exist if the terms
involving act like a source : energy in broughtequation (3d)
in via a nonlocal, di†usion-like process. The dynamic equa-
tions for the variables contain the terms,(eq. [1j])

Kw , 12w3 , wh2 , w2h , vw , (3e)

and one faces a rather severe challenge in constructing the
required third-order moments (TOM), a problem that we
discuss in ° 8.

The OV extent depends crucially on the model one
adopts for the TOMs. Recent nonlocal models (to be dis-
cussed in have adopted the following philosophy. If a° 11)
second-order moment like can be related to a Ðrst-orderwh
moment like LT /Lz as in it is hoped that theequation (1a),
TOM may be related to second-order moments via an
extension of the down-gradient expression. Thus, one writes

KwD [D
t
LK
Lz

, w3D [D
t

L
Lz

1
2

w2 (4a)

h2wD [D
t

L
Lz

h2 , w2h D [D
t

L
Lz

wh . (4b)

Since we have already shown that is notequation (1a)
correct, any analogy based on it is bound to be doubtful.
Indeed, recent large eddy simulations & Wyngaard(Moeng

have shown that underestimates the1988) equation (4)
TOM by a factor of D50. In we examine two recent° 11
nonlocal models which employ equation Our suggestion(4).
is to abandon these phenomenological expressions and
adopt the dynamic equations for the TOMs, which can be
derived using a procedure analogous to the one employed
to derive the second-order moments.

The Ðnal difficulty one encounters in constructing a turb-
ulence model is the dissipation of kinetic energy v. The key
point is as follows. The nonlinear interactions distribute the
available energy among eddies of di†erent sizes so as to
generate an equilibrium spectrum E(k) versus k (the integral
on all k@ is K above). The process is called ““ transfer ÏÏ speciÐ-
cally to underline the fact that it conserves energy : energy at
the largest scales is the same as the energy that cascades to

the smallest scales where it is dissipated into heat by kine-
matic molecular processes. Energy conservation requires
that v cannot be zero. The argument is manifestly indepen-
dent of viscosity. Since the dissipation of the velocity Ðeld
occurs via kinematic viscosity l, the exact expression for v
can be derived directly from the basic Navier-Stokes equa-
tions & Lifshitz(Landau 1970),

v\ 2l
ALu

i
Lx

i

B2 \ 2l)\ 2l
P

k2E(k)dk , (5a)

where ) is the enstrophy (u is the vorticity) and2)\u2
E(k) is the eddy energy spectrum. Since equation (5a)
““ seems ÏÏ to depend on l and since in stellar interiors l is
some 10 orders of magnitude smaller than the radiative
conductivity, it is often implied that one can neglect v since
l is small. This is, however, not so. The key point is that
when l] 0, )] O and thus the product l) remains Ðnite.
The physical interpretation of is that v isequation (5a)
handed down by the large scales and whatever it is, the
small scales will adjust their velocity spectra E(k) and their
sizes, the k2 factor, to accommodate whatever is needed, the
smaller the l, the smaller the scales at which dissipation
occurs. That v is independent of l has been proven many
times in turbulence. The argument that l] 0 is therefore
mathematically and physically incorrect. Next comes the
problem to describe v. The most common practice is to
assume that E(k) can be described by the Kolomogorov
spectrum

E(k) \ Ko v2@3k~5@3 , (5b)

where Ko is a constant 1.5È1.8. Integrating from k0\n/l,
one obtains

v\ cv
K3@2

l
, cv\ n

A2Ko
3
B3@2

. (5c)

This expression has been employed in all nonlocal models
we know of (Gough 1976 ; Xiong 1986 ; Balmforth 1992 ;

Cheng, & Deng AlthoughXiong, 1997). equation (5c)
exhibits no obvious pathologies, it has recently been found,
quite unexpectedly, that it entails divergencies that may
lead to lack of solutions of the whole system of equations

& Dubovikov That alone counsels against(Canuto 1997d).
the use of The divergences entailed byequation (5c).

must have been averted thus far by tweakingequation (5c)
the coefficients that appear in the equations. Even then,
these nonlocal models usually produce a sizable overshoot,

Numerical simulations Roxburgh, &OVDH
p
. (Singh,

Chan also predict large OV, but one must recall that1995)
computational limitations make it difficult to obtain reli-
able results. One is thus confronted with a situation in
which both numerical simulations and theoretical models
predict large OVs while observational data suggest small
OV. SpeciÐcally, for massive stars OV¹ 0.2H

p
(Andersen,

Nordstrom, & Clausen & Chin1990 ; Stothers 1991 ; Shaller
et al. Andersen, & Andersen1992 ; Nordstrom, 1997 ;

et al. In the solar case, helio-Kozhurina-Platais 1997).
seismological data yield & AntiaOV\ 0.1H

p
(Basu 1994)

and & Vorontsov A recentOV\ 0.25H
p

(Roxburgh 1994).
analysis using data with lower error and improvements in
the Ðtting procedure leads to OnOV\ 0.05H

p
(Basu 1997).

the face of this small versus large OV dichotomy, it seems
necessary to have a nonlocal theory of convection compat-
ible with the data, a primary goal of this work.
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Next, we would like to discuss the role of modeling versus
numerical simulations. It is often erroneously believed that
numerical simulations will render theories of convection
unnecessary. We believe that just the opposite is true since,
among other things, a theory is needed because of the
results of numerical simulations. First, no computer today
or in the foreseeable future is capable of simulating the
N D 1023 degrees of freedom that characterize a stellar con-
vective zone (N D Re9@4, ReD 1010). One must model the
unresolved scales, a task not without difficulties (Canuto

Assume, however, that we succeed. Still, the time1997a).
requirements of the simulation codes makes it impossible to
use them in a stellar code. On this basis alone, one con-
cludes that a theory is needed. The second reason is more
interesting and of deeper character. Consider the Ñux of
turbulent kinetic energy and the convective Ñux (in units
of c

p
o)

Fie \ Kw , F
c
\ wh . (6a)

Several LES studies (e.g., & Nordlund &Stein 1989 ; Chan
SoÐa et al. have demonstrated1989, 1996 ; Cattaneo 1991)
the following features : the convective region consists of
well-organized, narrow (small Ðlling factor), vigorous,
downÑows embedded in a midst of less organized, broad
(large Ðlling factors), more gentle upÑows. If we denote the
two components by subscripts d (down) and u (up), the
results can be summarized as follows :

Fied , large, Fieu , small ; (6b)

F
c
d, large, F

c
u, small ; (6c)

Fied ] F
c
d B 0 , (6d)

Fieu ] F
c
u \/ 0 . (6e)

Equation (6d) tells us that the downward directed Fiedcancels almost exactly the convective Ñux In spite of theF
c
d.

fact that both components in are small (theequation (6e)
Ðrst is smaller than the other), the less-organized motion is
the only one that survives to transport the heat. Thus,
LES-DNS results have not made a theory of convection
unnecessary ; they have strengthened the need for it.

It is the primary goal of this paper to present a theory
that avoids the shortcomings discussed above by using the
most reliable turbulence modeling presently available. The
novelties of the model are as follows :

1. Before being used for stellar convection, it was tested
on a large variety of data from DNS, LES, laboratory, and
geophysical Ñows (some of which exhibit quite vigorous
convection), for a total of some 80 turbulence statistics
(Canuto & Dubovikov 1996a, 1996b, 1996c, 1997a, 1997b,

[hereafter,1997c, Paper I, Paper II, Paper III, Paper IV,
Paper V, Paper VI], 1997d).

2. The model provides the desired expression for all the
timescales in versus Pe,equation (1i) equation (34).

3. It contains no mixing length since it employs a
dynamic equation for v, equations and(35a) (35b).

4. It can be formulated in k-space thus yielding the
spectra of all the second-order moments, asequations (16),
well as a one-point closure by integrating over all wave-
numbers kÏs, The standard Reynolds stressequations (19).
model is only given in the latter version and is unable to
compute the timescale (eq. [1i]),

5. It is numerically manageable for it requires much less
computer time than DNS-LES, and yet it matches their
results.

6. It is possible to use it in a stellar code.

Having discussed the justiÐcation and the advantages of
the model, we now discuss how the new model Ðts into the
general scheme of turbulence modeling. In the last few
decades, turbulence modeling has made considerable
progress on two fronts.

1. T wo-point closure models.ÈThese are the most sought
after models for they provide the maximum level of infor-
mation, the spectra themselves, which are the foundations
on which one constructs Ñuxes, kinetic energy, etc. The
most widely known models are direct interaction approx-
imation (DIA) and eddy damped quasi-normal markovian
model (EDQNM) The latter has recently(Lesieur 1991).
been used tio produce the logical successor of the MLT
model & Mazzitelli hereafter One of the(Canuto 1991 CM).
advantages of the model is that it has no adjustableCM
parameters. A variety of tests attest to its validity (Stothers
& Chin & Antia & Mira-1991, 1995 ; Basu 1994 ; Baturin
nova & Basu & Benvenuto1995 ; Antia 1997 ; Althaus 1996 ;

& Mazzitelli & ChinDÏAntona 1996 ; Kupka 1996 ; Stothers
It is, however, well known that DIA and EDQNM1997).

have met severe difficulties in dealing with inhomogeneities
and thus with nonlocality which is however, a(Leslie 1973),
primary feature of convection. This has prevented their use
to describe real Ñows.

2. One-point closure models.ÈHere one foregoes the
knowledge of the spectra being content with the integrals
over all wavenumbers. The resulting model is known as
Reynolds stress model (RSM). It has a long history of appli-
cations in engineering and geophysical turbulence, and its
main features have been extended to stellar convection

There is, however, a feature that is(Canuto 1992, 1993).
unique to stellar interiors : radiative losses undercut the effi-
ciency of convective transport and their inÑuence must be
fully accounted for, a situation that has no analog in geo-
physical Ñows. This consideration is all the more important
when convection becomes less efficient and the temperature
gradient + is no longer adiabatic, as it occurs in the OV
region where while in the middle of the con-+[ +ad\ 0,
vective zone As of today, no RSM can+ [ +adD 10~8.
handle this feature. We are able to solve the problem only
because we adopt a new two-point closure model that, con-
trary to DIA and EDQNM, can successfully deal with inho-
mogeneities ; we adopt the model and then integrate over all
wavenumbers so as to produce a new RSM which no longer
su†ers from the limitations of the previous ones, and yet it
remains manageable.

2. THE PHYSICAL CONTENT OF THE NEW MODEL

The starting point of the new model is the generally
accepted view & Yaglom(Batchelor 1971 ; Monin 1975 ;

that in fully developed turbu-McComb 1990 ; Lesieur 1991)
lence there is a hierarchy of turbulent eddies which draw
energy from the larger ones and cascade it without losses to
the smaller ones. The latter group of eddies are therefore
viewed as exerting an enhanced viscosity called turbulentl

t
,

viscosity, which of course depends on the size of the eddy
with since the smallest eddies can only feell

t
(k) l

t
(O) \ 0

the kinematic viscosity l. One thus introduces a dynamical
viscosity such thatl

d
(k)

l
d
(k) 4 l

t
(k) ] l\

P
k

=((p)dp ] l . (7a)
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The integral expresses the fact that the enhanced viscosity
felt by an eddy k is due to all the smaller eddies. The con-
struction of ((p) is one of the major challenges of any turb-
ulence theory, as documented by the large variety of
phenomenological expressions & Yaglom(Monin 1975),
beginning with the original one by Heisenberg. Because l

t
(k)

represents the large k-part of the spectrum, it is also referred
to as the UV (ultraviolet) component. We shall discuss our
derivation of below. The construction of theequation (7a)
other part, the action of the large, energy-containing eddies
on an eddy k (by analogy, this part is referred to as the
infrared part, IR) is considerably more difficult. It is in this
context that our model introduces a major novelty since we
suggest a model that is di†erent from all the previous ones
and the credibility of which (over and above the physical
arguments on which it is based) is checked a posteriori by
direct comparison with a host of data, as we shall discuss in

Assuming for the moment that the UV and IR parts° 4.
represent the main features of the interactions among
eddies, one can think of splitting the nonlinear term in the
original Navier-Stokes equations into two major com-
ponents,

f
i
t(k) , l

d
(k)k2u

i
(k) , (7b)

which represent the IR turbulent force and the UV parts,
respectively. This physical picture of an eddy interacting
with larger and smaller eddies, as represented by equation

translates into the so-called Langevin type of equa-(7b)
tions. For an arbitrary eddy k, the turbulent velocity and
the temperature Ñuctuating Ðeld are and h(k, t), weu

i
(k, t)

have

L
Lt

u
i
(k, t)\ f

i
t(k, t) [ l

d
(k, t)k2u

i
(k, t) ] f

i
ext(k, t) , (7c)

L
Lt

h(k, t) \ f ht (k, t) [ s
d
(k, t)k2h(k, t) ] f hext(k, t) , (7d)

Here and represent the true external forces that givef
i
ext f hextrise to turbulence, while is the thermal analog ofs

d
(k) l

d
(k) ;

the kinematic l and s are included in andl
d

s
d
.

In it was shown that can be derivedPaper I equation (7c)
directly from the original Navier-Stokes equations. As usual
in turbulence studies, derivations of this sort must use
somewhat restrictive conditions to make the problem trac-
table. The hope is that the Ðnal results will exhibit a struc-
ture that is independent of the initial assumptions and can
thus be viewed as of more general validity. Of course, this is
not a proof, but the success of similar approaches in the
context of critical phenomena & Kogut is(Wilson 1974)
reassuring. As shown in detail in one begins withPaper I,
the case of homogeneous and isotropic turbulence stirred
by forces that, although not representative of real Ñows,
have nonetheless a long history in turbulence studies since,
among other things, they allow exact solutions of the NSE
to be found Nelson, & Stephen Dominicis(Foster, 1977 ; De
& Martin If, for convenience purposes, one rep-1979).
resents the solution of the NSE in a diagrammatic form, as

Ðrst did, one can sum up all the diagrams andWyld (1961)
present a formal solution for the energy spectrum which
reveals that the nonlinear interactions have a twofold e†ect :
they enhance the kinematic viscosity from l to

l] l
d
(k) 4 l] l

t
(k) , (8a)

and they a†ect the external forcing in such a manner that, if
/ is the correlation function of such force, one has

/(k) ] /(k)] /8 (k) , (8b)

indicating that the medium size eddies, although no longer
forced directly by the external forcing /, still feel a forcing /8
which is ultimately responsible for the existence of the non-
equilibrium Kolmogorov spectrum. This is often called the
Wyld-Dyson result in analogy with the fact that in electro-
dynamics Dyson derived the exact equations for the elec-
tron and the photon. In them, the electron bare mass is
renormalized by a mass operator (an analog of while the/8 ),
vacuum acquires a dielectric constant larger than unity, the
polarization tensor, an analog of The DIA model men-l

d
(k).

tioned earlier corresponds to a particular subset of Wyld
diagrams, while the EDQNM model which is frequently
employed in turbulence studies is a simpler form of DIA
and thus carries with it the same limitations (diagram wise)
of the DIA.

Stochastic, Langevin-type, equations have a long history
in turbulence modeling. considered thisKraichnan (1970)
equation both in general terms and as it relates to DIA.

independently suggested a very similar model.Leith (1971)
& Kraichnan presented a detailed review ofHerring (1971)

Langevin-type equations corresponding to di†erent clo-
sures, as well as new calculations to compare the pefor-
mance of these models vis-a-vis one another, numerical
simulations and laboratory data. The same type of equation
was also suggested as a tool to construct a SGS (subgrid
scale) model to be employed in large eddy simulations. The
suggestion was pursued by Chasnov (1991).

However, equations and lack predictive power(7c) (7d)
until they are supplemented with a speciÐc model to
compute and the work of the turbulent forces f tl

d
(k), s

d
(k)

values.

3. CONSTRUCTION OF THE MODEL

3.1. Velocity Field
We adopt the generally accepted view that in fully devel-

oped turbulence, the transfer in k-space of turbulent energy
is a local phenomenon that takes place primarily among
eddies of similar sizes or ks. In analogy with the case of a gas
Ñow characterized by a current j(x) ;

j(x) \ o(x)v(x) , (9a)

we propose to characterize the ““ propagation ÏÏ of energy in
k-space by a current %(k), an energy density E(k) and a
rapidity r(k). With the mapping

j ] %(k) , o ] E(k) , v] r(k) , (9b)

we have

%(k) \ r(k)E(k) . (9c)

In principle, of course r(k) is a functional of E(k) and thus
is quite nonlinear. The next problem is toequation (9c)

relate r(k) to E(k). To that end, let us multiply equation (7c)
by t). Since by deÐnitionu

i
(k@,

E(k, t) \ 12k2
P

d)
k
dk@Su

i
(k, t)u

i
(k@, t)T , (9d)

the dynamic equation for E(k) is

L
Lt

E(k)\ A
t
(k)[ 2k2l

d
(k)E(k)] Aext , (9e)
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where is the work performed by the turbulent force f tA
t
(k)

A
t
(k) \ k2

P
d)

k
dk@Su

i
(k@, t) f

i
t(k, t)T . (9f )

has an analogous expression with f ext in lieu of f t. OnAextthe other hand, it is known that the(Batchelor 1971)
dynamic equation for E(k) can be written quite generally as

L
Lt

E(k) ] 2lk2E(k)\ [ L
Lk

%(k) ] Aext . (9g)

The terms corresponding to the molecular viscosity and
external forces do not require an explanation. The Ðrst term
on the right-hand side represents the nonlinear interactions
in the Navier-Stokes equations that conserve energy. They
appear as a divergence, and so the integral in physical space
over the whole volume vanishes. In k-space, this is
expressed as the k-divergence of a Ñux %(k) so that the
integral over all kÏs vanishes. The term is also known as the
transfer T (k) ;

T (k) \ [ L
Lk

%(k) ,
P

T (k)dk \ 0 . (9h)

Needless to say, the major challenge of any turbulence
mode is the transfer T (k). Since we have introduced

we also haveequation (9c),

T (k) \ [r(k)
L
Lk

E(k) [
C L
Lk

r(k)
D
E(k) , (9i)

which allows us to write

TUV \ [E(k)
L
Lk

r(k) , TIR \ [r(k)
L
Lk

E(k) . (9j)

Comparison with yieldsequation (9e)

A
t
(k) \ [r(k)

L
Lk

E(k) , l
d
(k) \ l] 1

2
k~2 L

Lk
r(k) , (9k)

which express and in terms of r(k), which remainsA
t

l
d
(k)

the only undetermined variable. Once it it expressed in
terms of E(k), is complete and the spectrumequation (9e)
E(k) can be derived for any given external forcing. Inverting
the second formula given in we haveequation (9k),

r(k)\ 2
P
0

k
p2l

t
(p)dp . (9l)

The problem thus comes down to Ðnding an expression for
This is a classical problem in turbulence theory, andl

d
(k).

several models have been proposed to compute it. Canuto,
Goldman, & Chasnov derived the relation(1988)

l
d
(k) \

C
l2] c

P
k

=
p~2E(p)

D1@2
, (10a)

but the constant c could not be determined from within the
model. As shown in use of RNG (renormalizationPaper I,
group) techniques leads to the expression

l
d
(k) \

C
l2 ] 25

P
k

=
p~2E(p)

D1@2
, (10b)

which has the same structure as but has theequation (10a)
advantage that the unknown c is now uniquely determined.
Also discussed in is the fact thatPaper I equation (10b)
generalizes previous RNG expressions for which werel

donly valid for restricted cases. The dynamic equation for the
spectrum E(k) is now complete : is given byA

t
equation (9k),

r(k) is given by and is given byequation (9l), l
d
(k) equation

Finally, we recall that the turbulent kinetic energy K(10b).
is obtained from

K \
P

E(k)dk . (10c)

In summary, we have succeeded in relating both the UV
and the IR components of the nonlinear transfer to a
unique function, the rapidity r(k), which in turn depends on
the turbulent viscosity l

t
(k).

3.2. Temperature Field
An analogous procedure leads to the equation for the

spectrum of the temperature varianceEh(k)

Eh \ 12h2\
P

Eh(k)dk . (11a)

We have (see for details)Paper I

L
Lt

Eh(k)\ A
t
h(k)[ 2k2s

d
(k)E(k) ] Aexth , (11b)

where

A
t
h(k) \ [ rh(k)

L
Lk

Eh(k) , (11c)

rh(k) \ Eh~1(k)%h(k) \ 2
P
0

k
p2s

t
(p)dp . (11d)

3.3. Momentum and Temperature Di†usivities
andl

d
(k) s

d
(k)

The RNG technique that led to also showsequation (10b)
the derivation of the di†erential equations that yields s

d
(k)

in terms of l
d
(k),

d
dl

d
s
d
\ b~1l

d
(l

d
] s

d
)~1 , (11e)

with the boundary condition and constants
d
(l) \ s,

b \ 0.3. The analytic solution of isequation (11e)

bs
t
\ l

t
] (bs [ l)

CA
1 ] as

t
] l

t
as ] l

B~a@b[ 1
D

, (11f )

where and depend on k and wheres
t

l
t2a \ (b2] 4b)1@2[ b, b \ a ] b.

4. TESTS OF THE MODEL

4.1. Inertial Range Spectra
When the Ñuxes % and are constant, the model ought%hto reproduce well-known inertial spectra. Indeed, when

L
Lt

\ 0 , Aext\ 0 , %(k)\ v , (12a)

yields the well-known Kolomogorov spec-Equation (9e)
trum,

E(k) \ 53v2@3k~5@3 . (12b)

The model also predicts the Kolmogorov constant
Ko \ 5/3, in very good agreement with recent data
1.59\ Ko \ 1.88 & Oncley As for the(Praskovsky 1994).
temperature Ðeld, when

%h \ vh , (12c)

the model yields the well-known Corrsin-Obukhov spec-
trum for the inertial-convective regime & Yaglom(Monin
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1975 ; Lesieur 1991)

Eh(k) \ Ba vh v~1@3k~5@3 , Ba\ Ko p
t
, (12d)

The Batchelor constant Ba is predicted to be the product of
Ko and the turbulent Prandtl number p

t
\ 0.72.

4.2. Homogeneous Flows
In the model predictions were tested againstPaper III,

DNS, LES, and laboratory data on dissipation region, free
decay for both energy and temperature Ðelds, skewness, and
the inertial-conductive regime. The model results compare
very well with the data.

4.3. Extension to Anisotropic Flows
The above tests refer to homogeneous and isotropic

Ñows. Next the model was extended to deal with anisotropic
but still homogeneous Ñows. A large set of DNS and LES
data are available for shear driven Ñows for plain strain,
axisymmetric contraction, and homogeneous strain. The
data provide the total turbulent kinetic energy. Reynolds
stresses, dissipation rate tensor, and the pressure-velocity
correlation tensor discussed in The performance of the° 1.
model is in all cases very satisfactory (Paper III).

4.4. Extension to Inhomogeneous Flows : Convection
The model was applied to the case of turbulent convec-

tion for which a large set of laboratory and DNS data has
recently become available SpeciÐcally, Nusselt(Paper IV).
number Nu versus Ra (Rayleigh number), versus Rah

w
2 , h

c
2

(temperature variance near the wall and at the center of the
convective cell), versus Ra (thermal boundary layerj

Tthickness), z-proÐle of mean temperature T , horizontal and
vertical Peclet numbers versus Ra, spectra of total kinetic
energy, vertical kinetic energy, temperature variance and
temperature Ñux versus (horizontal wavenumber), depen-k

hdence of the Nu versus Ra relation on the molecular
Prandtl number. In all cases, the model performance is
good.

4.5. T wo-dimensional and Rotating Turbulence
In the model was shown to predict well knownPaper VI,

features of two-dimensional turbulence (enstrophy and
energy inertial regimes) and of rotating turbulence. It
explains for the Ðrst time the LES data of the very di†erent
growth exhibited by vertical and horizontal length scales, a
feature that has remained unexplained until this model
become available.

In conclusion, we are not aware of any other turbulence
model that was submitted to such a large number of tests
and which had performed equally well, if one further con-
siders that the model has no free parameters.

5. STELLAR CONVECTION : SPECTRAL

DYNAMIC EQUATIONS

In the Boussinesq approximation, the external forces
appearing in the Langevin equations and are given(7c) (7d)
by

f
i
ext(k) \ [aP

ij
(k)g

j
h(k) , (13a)

f hext(k) \ b
i
u
i
(k) , b

i
\ [LT

Lx
i
[ g

i
c
p

, (13b)

where is the projection operator, a is theP
ij
\ d

ij
[ k~2k

i
k
jthermal expansion coefficient, and g is the gravitational

acceleration. The Ðnal form of the dynamic equations reads :

L
Lt

u
i
(k, t) \ [aP

ij
(k)g

j
h(k)] f

i
t(k, t) [ k2l

d
(k, t)u

i
(k, t) ,

(13c)

L
Lt

h(k, t) \ b
i
u
i
(k) ] f ht (k, t) [ k2s

d
(k, t)h(k, t) .

(13d)

To proceed, we begin by deÐning the densities of turbu-
lent kinetic energy, temperature variance, temperature Ñux,
and z-component of the turbulent kinetic energy :

d(k ] k@)e(k, t) \ 12Su
i
(k@, t)u

i
(k, t)T , (14a)

d(k ] k@)eh(k, t) \ 12Sh(k@, t)h(k, t)T , (14b)

d(k ] k@) j(k, t) \ Sw(k@, t)h(k, t)T , (14c)

d(k ] k@)e
z
(k, t) \ 12Sw(k@, t)w(k, t)T , (14d)

From these densities, one then constructs the corresponding
spectra,

E(k) \ k2
P

d)
k
e(k) , Eh(k) \ k2

P
d)

k
eh(k) , (15a)

J(k)\ k2
P

d)
k
j(k) , E

z
(k)\ k2

P
d)

k
e
z
(k) , (15b)

with

wh 4 J \
P
0

=
J (k)dk , (15c)

12w2 \
P
0

=
E
z
(k)dk . (15d)

The kinetic energy K and the temperature variance have
already been deÐned in equations and Multi-(10c) (11a).
plying by w and h, respectively, andequation (13c) u

i
(k@),

averaging, we obtain the equations for the densities in
equation (14) :

L
Lt

e] D
f
(e) \ at] agj[ 2k2l

d
e] L

Lz
A
l

Le
Lz
B

, (16a)

L
Lt

eh ] D
f
(eh) \ aht ] bj[ 2k2s

d
eh ] L

Lz
A
s

Leh
Lz
B

,

(16b)

L
Lt

j ] D
f
( j) \ 2agP

zz
eh ] 2be

z
[ k2(l

d
] s

d
) j

] 1
2

L
Lz

(l] s)
Lj
Lz

, (16c)

L
Lt

e
z
] D

f
(e

z
) \ 1

2
P

zz
at ] agP

zz
j [ 2k2l

d
e
z

] L
Lz
A
s

Le
z

Lz
B

, (16d)

where at and represent the work by the turbulent forcesaht

d(k ] k@)at(k, t) \ S f
i
t(k@, t)u

i
(k, t)T , (17a)

d(k ] k@)aht (k, t) \ S f ht (k@, t)h(k, t)T , (17b)
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As discussed in they are given in terms of the energy and° 3,
temperature Ñuxes %(k) and via the relations%h(k)

at\ (4nk2)~1At(k) \ [(4nk2)~1 E@(k)
E(k)

%(k) , (18a)

aht \ (4nk2)~1Aht (k) \ [(4nk2)~1 Eh@ (k)
Eh(k)

%h(k) , (18b)

Furthermore, the ÑuxesÏ % values are related to the dynami-
cal viscosities/conductivities by equations and(9c), (9l),

and are related via equations and(11d) ; l
t

s
t

(11e) (11f )
while is given by The di†usion termsl

d
(k) equation (10b). D

fto be speciÐed later represent the fact that the Ñow is inho-
mogeneous, while the last term in each equation represents
the losses due to kinematic processes. The turbulence equa-
tions must be supplemented by the dynamic(16a)È(16d)
equation governing the evolution of the mean temperature
Ðeld

c
p
o

LT
Lt

] LK
Lt

\ [ L
Lz

(F
r
] F

c
] Fie) , (18c)

where and represent the radiation Ñux and the Ñux ofF
r

Fieturbulent kinetic energy, to be speciÐed in what follows.

6. STELLAR CONVECTION : ONE-POINT

DYNAMIC EQUATIONS

Equations have recently been solved for the(16a)È(18c)
case of laboratory convection at high Ra By(Paper IV).
solving them, one obtains the spectra E(k), andE

z
(k), Eh(k),

J(k) with which one computes all the required statistics. The
method employed to solve numerically these equations is
presented in detail in The same procedure can inPaper IV.
principle be employed in the case of stellar convection.
However, since the Prandtl number is much smaller (in the
sun Pr D 10~10) than in laboratory (Pr D 1) and the
number of wavenumbers (scales) to be included is consider-
ably larger, we propose to Ðrst integrate equations

over all k and then use them in the stellar case.(16a)È(16d)
By so doing, we shall also be able to compare the ensuing
equations with those of the Reynolds stress method (RSM).

6.1. Reynolds Stress Model
The dynamic equations for the variables are(eq. [1j])

given by (Canuto 1992, 1993),

LK
Lt

] D
f
\ gaJ [ v , (19a)

L
Lt

1
2

h2] D
f
\ bJ [ vh]

1
2

L
Lz
A
s

L
Lz

h2
B

, (19b)

L
Lt

J ] D
f
\ bw2] (1 [ c1)gah2[ q

ph~1J

] 1
2

L
Lz
A
s

L
Lz

J
B

, (19c)

L
Lt

1
2

w2] D
f
\ [q

pv
~1
A
w2[ 2

3
K
B

] 1
3

(1 ] 2b5)gaJ [ 1
3

v . (19d)

With equations the knowledge of the spectral(16a)È(16d),
functions allows one to compute all the statistics, in particu-
lar v and In the RSM model, the lack of such spectravh.

forces one to model v and which we write asvh
v\ 2Kq~1 , vh \ h2qh~1 . (20a)

The RSM also contains two parameters, c, b and the time-
scales,

qh , q
ph , q

pv
. (20b)

The standard RSM is unable to compute either the con-
stants or This is no longer the case with theequation (20b).
new model, as we now show.

6.2. New Reynolds Stress Model
To obtain the RSM equations from our model, we Ðrst

integrate over and make use of andequation (16a) d)
k

(15a)
Since we obtain(18a). l

t
? l,

L
Lt

E[ L
Lz
A
l
t
LE
Lz
B

\ At(k) [ 2k2l
t
E] agJ [ 2k2lE ,

(21a)

where E4 E(k), J 4 J(k), Next, we recall thatl
t
4 l

t
(k).

because of equations and and the Ðrst of we(9h) (9i) (9k),
have

P
T (k)dk \

P
dk[At(k) [ 2k2l

t
(k)E(k)]\ 0 . (21b)

Integrating over k, becomes identical toequation (21a)
withequation (19a)

v\ 2l
P

k2E(k)dk . (21c)

Using the same procedure, becomes identicalequation (16b)
to with(19b),

vh \ 2s
P

k2Eh(k)dk . (21d)

Next, we consider and carry out the sameequation (16c)
procedure. We recover with the identiÐcationequation (19c)

1 [ c1\ P1
zz
h 4

P
P

zz
(k, k

z
)eh(k)dk

CP
eh(k)dk

D~1
, (21e)

q
ph~1\

P
k2(l

d
] s

d
) j(k)dk

CP
J(k)dk

D~1
. (21f )

Next, we integrate Using the Ðrst formula ofequation (16d).
we obtainequation (18a),

P
at(k)P

zz
dk \ 23

P
A

t
(k)dk . (22a)

Thus, with we obtainl
t
? l,

L
Lt

1
2

w2] D
f
\ 1

3
P

A
t
(k)dk ] ag

P
dkP

zz
j

[ 2
P

k2l
d
E

z
(k)dk . (22b)

Furthermore, using we rewriteequation (21b) equation
as(22b)

L
Lt

1
2

w2] D
f
\ [2

P
k2l

t
(k)
A
E

z
[ 1

3
E
B
dk

] ag
P

dkP
zz

j[ 2l
P

k2E
z
(k)dk . (22c)

The Ðrst integral di†ers from zero only for the smallest k
since at large k, eddies become isotropic and WeE

z
] 1/3E.
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can thus take out of the integral and evaluate it atk2l
t
(k)

By the same token, since the last integral peaks atk \ k0.large k we can take Thus we obtain from3E
z
] E. equation

(22c),

L
Lt

1
2

w2] D
f
\ [k02 l

t
(k0)
A
w2[ 2

3
K
B

] agJSP
zz
T
j
[ 1

3
v ,

(23a)

where

P1
zz
j 4 J~1

P
dkP

zz
j\
CP

dkj(k)
D~1 P

dkP
zz

j(k) . (23b)

Comparing this now with we derive theequation (19d),
relations

q
pv
~1 \ k02 l

t
(k0) , 13(1] 2b5) \ P1

zz
j . (23c)

Although and can be computedequations (21e) (23b)
only if one knows the spectral functions, reliable results can
be obtained by using the approximation

P
zz
j D P1

zz
h \ 23 , (23d)

which implies that

c1\ 13 , b5\ 12 . (23e)

These predictions compare well with the empirical values
(Appendix A in Canuto 1993)

c1\ 14 , b5\ 710 (23f )

6.3. T imescales andq
pv

, q
ph, qh

We assume a Kolomogorov inertial energy spectrum
with a cuto† (H is the Heaviside function)k0

E(k) \ Ko v2@3k~5@3H(k [ k0) . (24a)

From the general results of and weequations (10b) (10c)
derive,

l
t
4 l

t
(k0) \

A3 Ko
20
B1@2

v1@3k0~4@3 , K \ 3
2

Ko v2@3k0~2@3 .

(24b)

Combining them, we obtain

l
t
\ Ck

K
v

, (24c)

where the constant is given byCk

Ck \ (10n2)~1@2cv , cv 4 n
A 2
3Ko

B3@2
. (24d)

Using the Ðrst of equations and we obtain(20a) (23c),

q
q
pv

\
A27
20

Ko3
B1@2 \ 5

2
, (25a)

for Ko \ 5/3. compares favorably with theEquation (25a)
empirical estimate (Canuto 1993).

Next, we compute which, contrary to depends onq
ph q

pv
,

the efficiency of convection characterized by (efficients
t
[ s

turbulence) and (inefficient turbulence). The Peclets
t
\s

number Pe is often used to characterize the two regimes.
Because of the absence of a precise deÐnition (a numerical
constant can always be inserted without changing the
meaning of Pe), we prefer to distinguish the two regimes

with the ratio A reasonable (but not unique) deÐnitions
t
/s.

of Pe is is the radiative timescale)(qs

Pe\ qs
q

\ 1
2

Ck~1cv2
l
t

s
,

qs \ l2
s

, q\ 2
v

K . (26a)

When E(k), and e(k),s
t
[ s, Eh(k) D k~5@3, eh(k) D k~11@3.

From we have that near stationarity,equation (16c)

k2(l
d
] s

d
) j (k) D k~11@3 . (26b)

Since we are dealing with simpliÐes tol
t
? l, equation (11e)

d
dl

t
s
t
\ c~1(1 ] p

t
~1)~1 , (26c)

or, integrating,

s
t
\ c~1(1 ] p

t
~1)~1l

t
,

p
t
4

l
t

s
t
\ 1

2
[c] (c2] 4c)1@2] . (26d)

Since and sincel
t
(k)D k~4@3

l
d
] s

d
] l

t
] s

t
\ l

t
(1 ] p

t
~1) , (26e)

we have from j(k)D k~13@3, J(k) D k~7@3 andequation (26b)
givesequation (21f )

q
ph~1 \ (35 Ko)1@2(1 ] p

t
~1)k02@3v1@3 . (27a)

Since we Ðnally havek02@3v1@3 \ 3 Ko q~1,

q
q
ph

\
A27

5
Ko3

B1@2
(1 ] p

t
~1) . (27b)

For Ko\ 5/3, the coefficient becomes to be5(1 ] p
t
~1)

compared with the empirical value f1\ 7.5 (Canuto 1993,
eq. [81] and Appendix A). Using equations and(12d) (11a),
we obtain

12h2\ 32Ba vh v~1@3k0~2@3\ 12pt
vh q , (28a)

so that

qh
q

\ p
t
. (28b)

When, on the other hand, becomes tos [s
t
, equation (11e)

Ðrst order in Pe,

d
dl

t
s
t
\ c~1 l

t
s

, s
t
\ 1

2c
l
t
2
s

. (29a)

Since in this case

l
d
] s

d
] l

t
] s ] s , (29b)

we derive j(k) D k~17@3, J(k) D k~11@3 and so

q
ph\ (4sk02)~1 \ (4n2)~1l2s~1 , (30a)

q
q
ph

\ 4n2
Pe

. (30b)

In going from efficient to inefficient convection, changesq
phfrom Dq to DqPe. Since the latter is smaller than q, it

implies a much stronger damping of the convective Ñux by
the pressure-temperature correlations, as from the third
term in equation (19c).
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Finally, we compute Consider in a sta-qh. equation (16b)
tionary regime. Since

s [ l
t
[ s

t
D s~1l

t
2 , (31a)

we have

aht D k2s
t
eh> k2seh , (31b)

which, after integration over leads tok2d)
k
,

bJ(k)\ 2k2sEh(k) . (31c)

As we show below, the Ðrst term in the right-hand side in
is smaller than the second term, so that afterequation (16c)

integration over space angles we obtain

2bE
z
(k)\ k2sJ(k) . (32a)

Thus,

Eh(k) \ b2s~2k~4E
z
(k) \ 13 Ko b2s~2v2@3k~17@3 , (32b)

where we have used and the KolmogorovE
z
(k) \ 13E(k)

spectrum. It follows that

1
2

h2\ Ko
14

b2s~2v2@3k0~14@3 , vh \ 7
4

sk02 h2 . (32c)

From we Ðnally derive thatequation (20a),

qh
q

\
A 4
7n2
B
Pe\ 1 , (33)

a situation analogous to that of In summary, the expres-q
ph.sions for and ares [s

t
s
t
[s

q
pv

\ 25q , (34a)

q
ph
q

\ 1
4n2 Pe

A
1 ] 1

2
l
t
s~1] 1

2
s
t
s~1
B~1

, (34b)

qh
q

\ 4
7n2 Pe

A
1 ] 8

35
s
t
s~1
B~1

. (34c)

Here and Pe are given by and andl
t

equations (24b) (26a) s
tis given by with l] 0.equation (11f )

7. DISSIPATION

The dynamic equation for v is given by et al.(Canuto
1994)

Lv
Lt

] D
f
(v) \ c1 vK~1P

b
[ c2 v2K~1 ] c3 vN , (35a)

D
f
(v) \ [ 1

2
L
Lz
C
(l

t
] s

t
)
Lv
Lz
D

, (35b)

where P is the total production (in the case of pure buoy-
ancy, and N 4 (ga o b o)1@2. The constants areP

b
\ gaJ)

The constant is nonzero only in thec1\ 1.44, c2\ 1.92. c3stably stratiÐed case, and zero otherwise. In+ [ +ad\ 0
the local limit, we have

L
Lz
C
(l

t
] s

t
)
Lv
Lz
D

D l
t
l~2v . (35c)

Equating this with for example, the second term on the
right-hand side gives

vD
K3@2

l
, (35d)

that is, which requires the speciÐcation of theequation (5c),
mixing length l. It has recently been shown &(Canuto
Dubovikov that together with the1997d) equation (35d),
other equations may lead to divergent results,(19a)È(19d),
and thus it is preferable to use equation (35a).

8. DIFFUSION

Finally, we have to compute the nonlocal terms rep-
resented by the di†usion in equations (19a)È(19d). TheD

fbest model we can suggest is the one in which the third-
order moments satisfy the dynamical equations which are
obtained using the same procedure employed to obtain the
second-order moments. We begin by recalling that

D
f
(K)4

L
Lz
A1
2

q2w
B

, D
f

A1
2

h2
B

4
L
Lz
A1
2

h2w
B

, (36a)

D
f
(J) 4

L
Lz

(hw2) , D
f

A1
2

w2
B

4
L
Lz
A1
2

w3
B

. (36b)

We have (Canuto 1992)

A L
Lt

] 2cq~1
B
hw2\ bw3 [ J

L
Lz

w2] dgah2w[ 2w2 LJ
Lz

,

(37a)

A L
Lt

] 2cq~1] 2qh~1
B
wh2 \ 2bhw2[ 2J

LJ
Lz

] egah3[ w2 Lh2
Lz

, (37b)

A L
Lt

] 2cq~1
B
w3 \ [3w2 L

Lz
w2] 3egahw2[ 2q~1q2w ,

(37c)

A L
Lt

] 2c
*
q~1
B
wq2 \ [

A
2w2 L

Lz
w2] w2 L

Lz
q2
B

] ega(2hw2] q2h) , (37d)

A L
Lt

] 2cq~1
B
hq2\ bq2w[

A
2w2 LJ

Lz
] J

L
Lz

q2
B

] 2gawh2 , (37e)

A L
Lt

] 2c
**

q~1
B
h3\ 3bh2w[ 3J

Lh2
Lz

] s
L2
Lz2 h3 , (37f )

where

c\ 8 , d \ 2615 , e\ 45 , c
*

\ c] 53 , c
**

\ c[ 2 .

(37g)

8.1. Down-Gradient Approximation
The simplest model corresponds to retaining in equations

only the terms corresponding to the analog of(37a)È(37d)
We obtainequation (1).

hw2 \ [D1
LJ
Lz

, wh2 \ [D2
Lh2
Lz

,

w3 \ [ 3
2

D1
L
Lz

w2 , wq2 \ [ 1
2

c
c
*

D1
L
Lz

q2 , (38a)
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where the two turbulent di†usivities D values are deÐned as

D14 c~1qw2 , D24 12c(c] qqh~1)~1D1 . (38b)

It has been amply discussed in the literature &(Moeng
Wyngaard et al. that equations1986, 1988 ; Canuto 1994)

and yield results that fail quite conspicuously to(38a) (38b)
match LES data.

8.2. Intermediate Solution
In this model, we take two of the third-order moments as

given by (see derivation in eqs. and[50b] [50c])

wh2\ Jt1 , t1\ S
w
(h2)1@2 ,

w2h \ Jt2 , t2\ S
w
(w2)1@2 , (38c)

where is the skewness of the velocity ÐeldS
w

S
w

\ w3
(w2)3@2

. (38d)

Solving equations we then obtain the other(37c)È(37e),
third-order moments :

s~1w3 \ [A1[ 2wq2 ,

p~1wq2 \ [A4] A5w3 , (38e)

where the values are second-order moments, speciÐcally :A
k

A1 \ 3qw2 L
Lz

w2 ,

A2 \ 2w2 L
Lz

w2 ]w2 L
Lz

q2 ,

A3 \ 2w2 LJ
Lz

] J
L
Lz

q2 ,

2c
*
A4 \ qA2] e

2c
gaq2A3 ,

c
*
A5 \ egaqJ(w2)~1

C
1 ] 1

2c
gaq
Ah2
w2
B1@2D

,

p~1 4 1 [ e
4cc

*
gabq2 ,

s~1 \ 2c[ 3egaqJ(w2)~1 . (38f )

The four third-order moments entering equations and(36a)
are thus fully expressed in terms of second-order(36b)

moments.

8.3. Stationary
The full solution of equations in the stationary(37a)È(37f )

case and without radiative losses can also be worked out
using methods of symbolic algebra The(Canuto 1993).
results were successfully tested against LES data for the
PBL et al. In compact form, the result can be(Canuto 1994).
presented as follows. We Ðrst deÐne a one-column vector T :

D
f
(K) \ L

Lz
T11 , D

f

A1
2

w2
B

\ L
Lz

T21 , (39a)

D
f
( J) \ L

Lz
T31 , D

f

A1
2

h2
B

\ L
Lz

T41 . (39b)

Similarly, we deÐne the one-column vector S such that

S114 K , S214 12w2 , S314 J , S414 12h2 . (39c)

The third-order moments are then related to the second-
order moments by

T
ij
\ M

ik
L
Lz

S
kj

, (39d)

where the matrix is given byM
ij

M11\ E4 , M12 \ E2 , M13\ 12gaqE1 ,

M14 \ (gaq)2E3 , (39e)

M21\ B4 , M22 \ B2 , M23\ 12gaqB1 ,

M24\ (gaq)2B3 , (39f )

M31\ 2(gaq)~1A4 , M32 \ 2(gaq)~1A2 ,

M33 \ A1 , M34 \ 2gaqA3 , (39g)

M41\ (gaq)~2C4 , M42 \ (gaq)~2C2 ,

M43\ 12(gaq)~1C1 , M44\ C3 . (39h)

The functions A, B, C, and E (cm2 s~1) have the general
form

A
k
\ A

k1
qw2] A

k2
gaq2J . (39i)

The etc. are given in Appendix B ofA
k1

, A
k2

, Canuto (1993).
This form of the third-order moments were shown to
compare very well with the LES data et al.(Canuto 1994).

Depending on the speciÐc problem, it may not however,
be possible to assume the stationary case, in which case one
has to evolve in time equations (37a)È(37f ).

9. FULL NONLOCAL MODEL

In summary, the complete nonlocal model is composed of
Ðve di†erential equations for the Ðve variables

K , w2 , 12h2 , w , v , (40)

which represent the total turbulent kinetic energy, the turb-
ulent pressure the potential energy, the convectivep

t
\ ow2,

Ñux and the rate of energy dissipation. The dynamic equa-
tions are given by and Theequations (19a)È(19e) (34a)È(34c).
di†usion terms are given by equations v is given(36)È(37),
by equations and Pe are given by equatons(35a)È(35b), l

tand while is given by with(24b) (26a), s
t

equation (11f )
l] 0. The dissipation of temperature variance is given byvhThe constants and are given byequation (20a). c1 b5equation (23e).

10. STATIONARY AND LOCAL LIMIT

Almost without exceptions, in the past 40 years stellar
structure calculations treated convection with a stationary,
local model,

L
Lt

] 0 ,
L
Lz

] l~1 , (41)

where l is a mixing length. Such approximation holds best
in the efficient convective region but the lack of di†usion
does not allow these models to incorporate the OV pheno-
menon. To this category belong the MLT model, the CM
model & Mazzitelli and CGM model(Canuto 1991),

Goldman, & Mazzitelli The dissipation v is(Canuto, 1996).
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given by Since the problem is now algebraic,equation (5c).
it can be solved analytically. The results are the following :

Convective Ñux (in units of c
p
o) :

F
c
\ wh 4 J , J \ bs' , (42a)

'\ Ko3 C
Aq

ph
q
B3@2

S1@2 , S 4 gabl4s~2 (42b)

C\
A27
n4
B1@2C

1 ] 2b5
q
pv
q

] 3(1 [ c1)
qh
q
D3@2

. (42c)

In the case of efficient convection, and are con-q
ph/q qh/qstant, and we deriveequation (34),

'D S1@2 . (43a)

In the case of inefficient convection, we Ðrst obtain, using
equation (34),

q
ph/q\ (8n2)~1cv2@3(S')1@3 , qh/q\ 2(7n2)~1cv2@3(S')1@3 ,

(43b)

which implies, for Ko\ 5/3,

'\ 2 ] 10~5S2 , (43c)

which is intermediate between the CM and the CGM
models.

Turbulent kinetic energy, K:

K \ 3
2

n~2@3 Ko (S')2@3
As

l
B2

; (44a)

Vertical turbulent kinetic energy :

1
2

w2\ 1
3

K
A
1 ] 2b5

q
pv
q
B

; (44b)

Temperature variance, (1/2)h2 :

1
2

h2 \ cv~2@3
Aqh

q
B
'(bl)2(S')~1@3 ; (44c)

Potential to kinetic energy ratio :

1
2

gah2
bK

\ qh
q

. (44d)

The basic predictions of the CM and CGM models, namely,
(1) MLT underestimates ' in the e†ective convective region,
(2) MLT overestimates ' in the low convective efficiency
region, (3) the mixing length l \ z, have all been conÐrmed
either by direct numerical simulation LES (Demarque,
Guenther, & Kim or via astrophysical tests (red1997)
giants, & Chin helioseismology, &Stothers 1995 ; Basu
Antia & Miranova & Basu1994 ; Baturin 1995 ; Antia 1997 ;
white dwarfs, & Benvenuto low-mass stars,Althaus 1996 ;

& Mazzitelli stellar atmospheresDÏAntona 1996 ; Kupka
l\ z rule, & Chin1996 ; Stothers 1997).

11. NONLOCAL MODELS OF GOUGH AND XIONG

and et al. have suggested andXiong (1986) Xiong (1997)
worked out the consequences of a nonlocal model that
employs the four di†erential equations under(19a)È(19d)
the following approximations :

(q
ph, qh)D q , D

f
: down gradient . (45a)

The Ðrst approximation is valid in the very efficient regime,
while in the OV region it is no longer valid since equations

and show that(34b) (34c)

q
ph, qh > q . (45b)

An overestimate of the timescales may lead to an overesti-
mate of the OV extent. As for v, instead of equations (35a)
and the model adopts a local expression,(35b), equation

As recently shown & Dubovikov this(5c). (Canuto 1997d),
can give rise to divergent results. The down-gradient model
for the values has already been discussed.D

f has suggested a nonlocal model thatGough (1976)
adopts only two of the four equations (19a)È(19d),
namely, the ones corresponding to and J. The di†usionw2
was treated with the down gradient form equations

and v was treated with the local model given by(38a)È(38f )
The model equations can be written asequation (5c).

L2
Lm2 X \ X [ Xl , X 4 (J, p

t
) . (46a)

The superscript l means that one uses the local expressions,
e.g., equations and the variable m is(42a)È(42c) (44b) ;
deÐned as z/l, where l is the mixing length, l \ aH

p
.

Consider Ðrst If we employ the down-equation (19d).
gradient approximation, simple steps lead toequation (38c),
(in the stationary case)

p
t
A] Ap

t
@ \ p

t
[ p

t
l , (46b)

where (L/Lm \ @)
A\ (lnD1)@ , m \ z/" ,

"2\ 34D1qpv , p
t
l \ 23K(1 ] 2b5 q

pv
q~1) , (46c)

and we have used gaJ \ v and equation (44b).
Next, consider the equation for J, Usingequation (19c).

the same procedure, we derive

JA ] AJ@\ J [ J
l
, (47a)

with

"2\ 12D1 q
ph , J

l
4 (bw2] 23gah2)q

ph . (47b)

These equations are valid for both efficient and inefficient
convection.

Comparing and with equationequations (46b) (47a) (46a)
we conclude that we are unable to reproduce GoughÏs
model. To do so, we must neglect A and assume the same "
in both and J equations, while they are di†erent since thep

tÐrst depends on while the other depends on theq
pv

q
ph :former does not depend on the Peclet number while the

latter does. The neglect of A may be interpreted as follows.
Consider the velocity Ðeld skewness

S
w

\ w3
(w2)3@2

. (48a)

Using and the fact that and thatequation (38c) w2DK
we deriveD1D lK1@2,

S
w

D [K~1 LK
Lm

D A . (48b)

For a constant l, A\ 0 is thus equivalent to S
w

\ 0.
However, is the property of a Gaussian Ðeld whileS

w
\ 0

turbulence is highly non-Gaussian ; in fact, a turbulent
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ÐeldÏs most distinguishing feature is that of having a Ðnite
skewness. For the case of convective boundary layer, isS

wgiven in Figure 1 of & Rotunno whereas forMoeng (1990),
the case of Benard-Rayleigh convection, see Kerr (1996).

GoughÏs model has recently been applied to helio-
seismology by andBalmforth (1992) Houdek (1997).

12. UP AND DOWNDRAFTS : CENTRAL ROLE

OF SKEWNESS

It is known from the study of the convective boundary
layer & Rotunno(Wyngaard 1987 ; Moeng 1990 ; Randall,
Shao, & Moeng that a convective layer exhibits1992)
regions of updrafts and downdrafts. Here we shall discuss a
simple model to highlight the central role of the skewness

in determining the basic features of theequation (48a)
up-down drafts. We shall write for the mean vertical veloc-
ity and temperature

w6 \ pw
u
] (1 [ p)w

d
, (49a)

h6 \ ph
u
] (1 [ p)h

d
, (49b)

meaning that the up (down) drafts have velocities andw
u
(w

d
)

occupy fractional areas p and (1[ p), respectively. We have

w2\ (w
u
[ w6 )2p ] (w

d
[ w6 )2(1[ p) ,

h2\ (h
u
[ h6 )2p ] (h

d
[ h6 )2(1 [ p) ,

wh \ (h
u
[ h6 )(w

u
[ w6 )p ] (w

d
[ w6 )(h

d
[ h6 )(1[ p) , (49c)

or, more explicitly,

w2\ p(1[ p)(w
u
[ w

d
)2 ,

h2\ p(1[ p)(h
u
[ h

d
)2 ,

wh \ p(1[ p)(w
u
[ w

d
)(h

u
[ h

d
) . (49d)

For the third-order moments, we have

w3\ p(1 [ p)(1[ 2p)(w
u
[ w

d
)3 ,

w2h \ p(1 [ p)(1[ 2p)(w
u
[ w

d
)2(h

u
[ h

d
) ,

wh2\ p(1 [ p)(1[ 2p)(h
u
[ h

d
)2(w

u
[ w

d
) . (50a)

Combining the above relations, we further obtain

wh2\ t1wh , t1\ S
w
(h2)1@2 , (50b)

w2h \ t2wh , t2\ S
w
(w2)1@2 , (50c)

which relate two third-order moments to the second-order
moment provided one knows the skewness which iswh S

wrelated to the Ðlling factor p or by the relation

p \ 12[1[ S
w
(4 ] S

w
2)~1@2] ,

S
w

\ (1 [ 2p)[p(1[ p)]~1@2 . (50d)

We further note that with we havew6 \ 0,

w
u
\
A1 [ p

p
B1@2

(w2)1@2 ,

w
d
\ [

A p
1 [ p

B1@2
(w2)1@2 ,

h
u
\ h6 ]

A1 [ p
p
B1@2

(h2)1@2 ,

h
d
\ h6 [

A p
1 [ p

B1@2
(h2)1@2 . (50f )

The key ingredient is p, the Ðlling factor, and thus the
knowledge of the skewness is instrumental to determineS

wthe basic features of the ““ thermals.ÏÏ Numerical simulations
& Nordlund et al.(Stein 1989 ; Cattaneo 1991 ; Spruit 1997)

have shown several facts, among which the most salient are
the following :

1. There exist fast, concentrated downÑows in the midst
of slow and broad upÑows ;

2. The convective Ñux carried by the downÑows is larger
than that carried by the upÑows (in the middle of the cell,
the ratio is about 2) ;

3. The Ñux of turbulent kinetic energy is negative and
carried mostly by the downÑows ;

4. The ““ convected ÑuxÏÏ, that is,

F(convected)4 12oq2w] c
p
owh 4 Fie] Fconv , (51a)

in the downÑows is almost zero because the two Ñuxes
cancel each other out ; and

5. The only remaining contribution to F(convected)
comes from the disordered upÑow where Fiv\ F

c
.

Property (1) implies that the Ðlling factor for upÑows (p)
is larger than the Ðlling factor for downÑows (1[ p). Thus,

andp [ 12, owd
o[ ow

u
o, S

w
\ 0.

Regarding property (2), we use to write theequation (49d)
enthalpy (convective) Ñux as the sum of up and down Ñuxes.
Use of then gives (in units ofequation (50f ) c

p
o)

F
c
(up) \ (1[ p)(h2)1@2(w2)1@2 ,

F
c
(down)\ p(h2)1@2(w2)1@2 . (51b)

If property (2) is also satisÐed.p [ 12,As for property (3), when S
w

\ 0, Fie \ 0.
The relevance of the above simpliÐed model is that it

provides a way to relate and cross-check the predictions of
DNS/LES with those of the present model.

13. ROLE OF COMPRESSIBILITY

One may question the Boussinesq approximation since
the rather large extent of the CZ in stars (in the Sun is about
30% of the radius) makes density variations quite substan-
tial and thus arguably only poorly described by the Bous-
sinesq model. In this context, we would like to o†er the
following observations : (1) by far the largest fraction of the
CZ is so nearly adiabatic that a detailed theory of convec-
tion is actually hardly needed since is an excellent+\ +adapproximation. A reliable theory of convection is needed in
the much smaller region where convection becomes ineffi-
cient, which of course comprises the OV region. Obser-
vational data tell us that in massive stars OV \ 0.2H

p
,

while in the Sun These facts help the Bous-OV\ 0.05H
p
.

sinesq approximation more than in the case of EarthÏs plan-
etary convective layer (PBL) whose extent of D1 km is
small compared with km, a fact considered moreH

p
D 8

than sufficient justiÐcation for the Boussinesq approx-
imation. Needless to say, radiative e†ects must nonetheless
be accounted for. (2) A recent model of compressible con-
vection shows that it will probably(Canuto 1997a, 1997b)
lower the extent of OV which the present model predicts to
be already within the upper limit set by the data. (3) The
local, Boussinesq, one-eddy MLT model has been the stan-
dard tool for more than 40 years and only recently improve-
ments are being included in stellar codes. The path toward a
fully compressible model must go through intermediate
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TABLE 1

Type of Model Number of Equationsa

Boussinesq type :
Local, MLT . . . . . . . . . . . . . . . . . . . . . . 1A
Semilocal, CM, CGM . . . . . . . . . . . 1A
Nonlocal, Gough 1976 . . . . . . . . . . 3DE
Nonlocal, Xion et al. 1997 . . . . . . 4DE
Nonlocal, Present model . . . . . . . 5DE
Nonlocal, Compressible . . . . . . . . 18DE

a A\ algebraic ; DE \ di†erential equations.

models like the present one since the number of equations
involved increases quite substantially, as shows.Table 1

14. CONCLUSIONS

Within the Boussinesq approximation, the present model
represents state of the art in turbulence modeling. The
assessment is based on three facts : (1) absence of adjustable

parameters, (2) testing of the model on more than 80 sta-
tistics from laboratory, DNS and LES data, and (3) astro-
physical tests of the local limit of the theory, speciÐcally : red
giants, & Chin helioseismology(Stothers 1991, 1995), (Basu
& Antia & Miranova & Basu1994 ; Baturin 1995 ; Antia

& Christensen-Dalsgaard white dwarfs1997 ; Canuto 1998),
& Benvenuto low mass stars &(Althaus 1996), (DÏAntona

Mazzitelli stellar atmospheres l \ z1996), (Kupka 1996),
rule, & Chin(Stothers 1997).

It is hoped that the model will now be applied to quantify
the OV phenomenon in the Sun as well as in massive stars
where a reliable theoretical determination is still lacking
while observational data have already provided quite strin-
gent limits.

The authors would like to thank an anonymous referee
for useful comments. One of the authors (V. M. C.) would
like to thank Dr. R. Stein for kindly providing results of his
LES code concerning the properties of the Ñow discussed in
° 12.
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